

Carbon Disclosure Policy Approaches: Lessons from the case of Carbon Monitoring for Action (CARMA.org)

Shakeb Afsah, Performeks LLC, Bethesda, MD, USA 27 June, 2008 / EAERE 2008, Göteborg, Sweden

www.climatedataduediligence.org

Pres	entation Outline
1	Review of Carbon Disclosure Initiatives
2	About Carbon Monitoring for Action (CARMA.org)
3	Origin of this Research – Audit and Verification of CARMA's CO2 Estimates
4	Carbon Disclosure Issues – Use of private data, regression model for CO2 estimates & debatable ranking methodology
5	Policy Lessons for Carbon Disclosure Initiatives

About Carbon Disclosure

- Act of disclosing information about CO2 emissions from a site or at a company level or other aggregates so that the <u>public can evaluate comparative performance of</u> <u>emitters</u>.
- Basic idea is to motivate emitters to reduce CO2 emissions through informational incentives and/or stakeholder pressure
- Origin of disclosure initiatives can be traced to the US Government's Toxic Release Inventory program (1986) or the industrial environmental ratings initiative of the Government of Indonesia (PROPER program 1995).

About Carbon Disclosure

- Empirical research shows that disclosure of environmental information (raw data or performance rating) leads to performance improvement.
- Carbon disclosure builds on this decade long research findings
- First published document on carbon disclosure dates back to 1998 ("Disclosure in the Electricity Marketplace: A Policy Handbook for States", Center for Clean Air Policy, March 1998)
- A recent publication on carbon disclosure is "How to Reduce Greenhouse Gas Emissions Now, Policy Brief Note #161-The Brookings Institution", Mary Graham and Elena Fagotto, June 2007.

Various Carbon Disclosure Initiatives

Electricity Supplier Disclosure Label—US State level Initiative

4CE

CARBON DISCLOSURE PROJECT

The Climate Registry

1. Environmental Disclosure Initiatives for Electricity Suppliers at the State level in US

- <u>Main Goal</u>: Inform consumers about fuel mix and environmental emissions including CO2, SOx and NOx
- Start Year: around 2000
- <u>Coverage</u>: Currently twenty one states have adopted full disclosure policies
- <u>Methodology</u>: IPCC greenhouse gas methodology using fuel consumption, a fuel-specific carbon coefficient, and the fuel-related fraction of carbon oxidized (same as the WRI / WBCSD GHG protocol)

Source: http://www.eere.energy.gov/greenpower/markets/disclosure.shtml#me

1. Environmental Disclosure Initiatives for Electricity Suppliers—Disclosure Label Format

UNIFORM INFORMATION DISCLOSURE LABEL

for

Standard Offer Service provided by Energy Atlantic, LLC (Meets or Exceeds Maine's 30% Renewable Requirement)

> Residential & Small Commercial Class August 2001

Generation Price:

Average price per kWh at different levels of use. Prices do not include regulated charges for customer service and delivery:

Ave. Use per Month	<u>250 kWh</u>	<u>500 kWh</u>	<u>1000 kWh</u>	<u>2000 kWh</u>	<u>10,000 kWh</u>	<u>20,000 kWh</u>	<u>40,000 kWh</u>
Ave. Price per kWh	4.089 ¢	4.089 ¢	4.089 ¢	4.089 ¢	4.089 ¢	4.089 ¢	4.089 ¢

Power Sources:

Demand for this electricity product was assigned generation from the following sources:

Biomass	14 %
Coal	13 %
Hydro	9 %
Nuclear	15 %
Natural Gas	13 %
Solar	0 %
Oil	26 %
Other Renewables	7%
Wind	0 %
Municipal Trash	3 %

Air Emissions:

Carbon dioxide (CO_2), nitrogen oxide (NO_x), and sulphur dioxide (SO_2) emission rates from these sources, relative to the regional average:

2. Consumer Choice and Carbon **Consciousness for Electricity (4CE)**

An EU initiative, started in 2002
aims to label electricity suppliers so
that consumers can make informed
choices in the liberalized market.

Source: Öko-Institut 2002

Supplier: Supp Phone: 0800 Website: www	lier's na - xxxx x supplier	web:	site.com				
Monthly electricit	y cost						
For an annual consumption of	1.600 kWh e.g.		2.500 kWh e.g.		4. four-pe	4.000 kWh e.g.	
electricity bill is	23,20	e	33,	30 €	1	50,30 €	
(Prices as of: 01.01.02)	indi 2 mor	athe			fina	I prices in	cl. VAT
Minimum contract per	iod: 3 mor	ntns		Emain		ntol im	nant
ruei mix					onme		pact
Your electricity is gen following fuel sources	Gre em Rac was	enhous issions dioactive ste	e gas e				
	for comparison: Product Germany name average (2002) (2001)			-		in	high npact
Coal	61,0%	51	,1%	112	,		
Nuclear	25,0%	31	,0%				100-
Natural gas	4,5%	7	,0%			Gen	many
Renewable energy	8,5%	7	,5%		81	ave	erage
of which							
Hydroelectric	4,5%		3,5%				_
Wind	3,2%		3,2%				
Biomass	0,8%		0,8%				
Solar	< 0,1%		<0,1%	-			
Other renewable	< 0,1%		<0,1%			in	low
Other energy sources	s 1,0%	3	,4%	Pro	duct		

ELECTRICITY LABEL

Product name

Product:

Page • 9

3. Climate Leaders—USEPA

<u>Coverage</u>: Since 2002, participation has increased to 191 Corporations covering various sectors including steel, pulp & paper and others.

<u>Methodology</u>: Based on WRI / WBCSD GHG Protocol; Companies are required to document emissions of the six major GHGs (CO2, CH4, N2O, HFCs, PFCs, and SF6) on a company-wide basis

4. Corporate Environmental Reporting using Global Reporting Initiative (GRI) Framework

Voluntary disclosure of CO2 emissions data using the GRI protocol

- <u>Methodology</u>: Based on WRI / WBCSD GHG Protocol
- <u>Coverage</u>: Several thousand companies world wide report CO2 emissions data
- <u>Key Challenge</u>: Difficult to do comparative analysis because of dispersed data

5. Carbon Disclosure Project-UK based

Click here to view Bill Clinton's 2007 Iaunch speech

CARBON DISCLOSURE PROJECT

- Methodology: WRI / WBCSD GHG Protocol
- <u>Coverage</u>: 3,000 corporations by 2008
- Key Features: As described on CDP's website,
 - Over 8 years CDP has become the gold standard for carbon disclosure methodology and process.
 - The CDP website is the largest repository of corporate greenhouse gas emissions data in the world.
 - CDP leverages its data and process by making its information requests and responses from corporations publicly available, helping catalyze the activities of policymakers, consultants, accountants and marketers.

Source: http://www.cdproject.net/index.asp

6. California Climate Action Registry

- <u>Implemented by</u>: A private non-profit group
- Origin: The California Climate Action Registry was formed in 2001 when a group of CEOs, who were investing in energy efficiency projects that reduced their organizations' greenhouse gas emissions, requested the state create a place to accurately report their greenhouse gas emissions history.
- <u>Coverage</u>: Only California based business entities; so far 344 members who pay annual subscription fee ranging from \$600-\$10,000 depending on the size of the private entity
- <u>Methodology</u>: Based on WRI / WBCSD GHG Protocol

7. The Climate Registry

The Climate Registry

Create a common standard for measuring and tracking greenhouse gas emissions.

Standardize best practices in greenhouse gas emissions reporting. <u>The WRI/WBCSD</u> <u>GHG Protocol Corporate Standard</u> has already established internationallyrecognized standards for greenhouse gas accounting at the entity-level.

Promote full and public disclosure of greenhouse gas emissions. The Registry will ensure that greenhouse gas emissions data is made available to the public through annual reports posted on the Registry's website.

Programs covers 39 US States, 7 Canadian Provinces, 6 Mexican States, 3 Native Tribes and the District of Columbia

8. Dirty Thirty-EU25 Power Plants

WWF International

Groβe Präsidentenstr. 10 10178 Berlin Germany

Tel.: +49-30-308742-0 Direkt: -21 Fax: +49-30-308742-50 teriete@wwf.de www.panda.org

Dirty Thirty – Europe's worst climate polluting power stations

Rank	Name	Country	Fuel	Commissioning Date	Parent Company	Relative Emissions ¹
1	Agios Dimitrios	Greece	Lignite	1984-1986, 1997	DEH	1.350
2	Frimmersdorf	Germany	Lignite	1957-1970	RWE	1.270
3	Aboño	Spain	Hard coal	1974 & 1985	Hidrocantábrico	1.270
4	Kardia	Greece	Lignite	1975, 1980-1981	DEH	1.250
5	Jänschwalde	Germany	Lignite	1976-1989	Vattenfall	1.200
6	Weisweiler	Germany	Lignite	1955-1975	RWE	1.180
7	Neurath	Germany	Lignite	1972-1976	RWE	1.150

- <u>Methodology</u>: Based on EU Directive for monitoring and verification
- <u>Coverage</u>: Top thirty power plants
- Key Feature: Ranks based on carbon intensity (gms / kwh)
- Source:http://assets.panda.org/downloads/european_dirty_thirty_may_2007.pdf

- CO2 emissions of individual power plants are calculated using regression equations developed by CARMA
- CARMA was launched on 14 Nov, 2007 and it disclosed the relative ranks of 50,000 power plants.
- CARMA also ranked countries, and the US States, counties and congressional districts

CARMA's Methodology

- The CO2 emissions of 22,417 plants are estimates based on a regression analysis of 2,469 CO2-emitting facilities in the US.
- The power production for 47,302 plants are estimates derived from the actual data of 3,869 power plants in the US and 202 in India. The estimation process consists of the following 5-steps:

1. Estimate capacity factors using a regression analysis based on US facilities

2. Multiply estimated capacity factors by World Electric Power Plant Database (WEPP) /Platts reported operational plant capacities

3. Combine estimated and reported power to obtain total power production by energy source for each country

4. For each energy source, divide the total by the corresponding total from the US Energy Information Agency to obtain an adjustment factor

5. For each country and energy source, multiply each estimated power output by the relevant adjustment factor (if the power output isn't publicly-reported)

A plant's power production in megawatt-hours (MWh) is the product of its capacity factor (% of potential capacity actually used), its capacity (MW), and its potential operating hours per year (usually 24 * 365 = 8,760). Emissions intensity for each plant is calculated by dividing CO2 emissions by power production.

CARMA's Methodology: Detailed Description

Working Paper Number 145 May 2008

Calculating CARMA: Global Estimation of CO2 Emissions from the Power Sector By David Wheeler and Kevin Ummel

Download from: http://cgdev.org/content/publications/detail/16101

Data quality concerns about CARMA surfaced immediately

said

Herald Eribune Asia - Pacific

iht.com	Busi	ness	Culture	Sports	Opini	on	
AMERICAS	EUROPE	ASIA/PACIFIC	AFRICA/MIDD	LE EAST	TECH/MED	IA STYLE	HEALT
TRAVEL	PROPERTIES	BLOGS	DISCUSSIONS	SPECIAL F	REPORTS A	UDIONEWS	

Hong Kong company says database got it wrong on CO2 emissions

The Associated Press	Published: November 16	5, 2007

E-Mail Article

Listen to Article

Printer-Friendly

♣ Share Article

👎 🗖 🕂 Text Size

HONG KONG: U.S. researchers who listed a Hong Kong power plant as Asia's third worst polluter have agreed to retract the claim after it was found they used inaccurate data, the operator of the plant and the researchers said Friday.

The newly launched Carbon Monitoring for Action database said the coal-fired Castle Peak power plant spewed out 35.8 million tons of heat-trapping carbon dioxide a year, making it the third biggest emitter of the greenhouse gas in Asia.

But China Light and Power, the company that operates the plant, said the data was wrong, citing its own independently audited reports that put carbon dioxide emissions at 13.3 million metric tons (14.7 million U.S. tons) for 2006, well under half the amount cited in the database.

Researchers at the Washington-based Center for Global Development, which directed the global database of carbon emissions, had agreed to amend the data, CLP spokesman Carl Kitchen

Others raised concerns about CARMA too

A spokeswoman for NSW Energy Minister Ian Macdonald said: "The US study has utilised a number of assumptions, some of which are highly questionable.

"For example, the quoted tonnes are inaccurate because they are based on capacity only and ignore actual generation, fuel type and efficiency.

"Simply using the size of a power plant is not appropriate for comparing rates of emissions.

"The study also appears to have assumed how the power stations operate, rather than researching the actual operation data."

Source: AFP / 15 November, 2007 / Reporter: Ilya Gridneff Website: http://www.news.com.au/heraldsun/story/0,21985,22764722-5005961,00.html

Basic Methodology for Verification:

- Compare CARMA's estimates with the USEPA's data on CO2 emissions, carbon intensity and energy output.
- Use USEPA's power plant level data from the Clean Air Markets Division (CAMD) online database for emissions trading program.
- Check if the ranks and CO2, carbon intensity and energy output numbers match
- Find patterns in the differences between CARMA and USEPA's data
- Make policy recommendations

Comparison of top-12 emitters: Accuracy level -- 4 / 12 correct (33%)

CARMA's Dirty Dozen-2007

- 1. The Scherer plant in Juliet, GA -
- 2. The Miller plant in Quinton, AL -
- 3. The Bowen plant in Cartersville, GA -
- 4. The Gibson plant in Owensville, IN
- 5. The W.A. Parish plant in Thompsons, TX
- 6. The Navajo plant in Page, AZ
- 7. The Martin Lake plant in Tatum, TX
- 8. The Cumberland plant in Cumberland City, TN 🛧
- 9. The Gavin plant in Cheshire, OH
- 10. The Sherburne County plant in Becker, MN 🛧
- 11. The Bruce Mansfield plant in Shippingport, PA 🗲
- 12. The Rockport plant in Rockport, IN 🛧

-1.	Scherer plant, GA
-2.	James H Miller Jr, AL
3.	Bowen plant, GA
4.	Gibson plant, IN
5.	Martin Lake plant, TX
6.	W A Parish plant, TX
7.	Monroe plant, MI ★
8.	Navajo Generating Station, AZ
9.	Colstrip plant, MT ★
10.	Gen J M Gavin plant, OH
11.	Labadie plant, MO ★
12.	Monticello plant, TX ★

USEPA Top 12 Emitters-2007

Rank accuracy declines rapidly in the next dozen: Accuracy level -- 1 / 12 correct (8%)

		CARMA's	s List		USE	PA's List	
	State	County	CARMA_Name		EPA_Name	State	EPA_County
(Georgia	Monroe	SCHERER		Scherer	GEORGIA	Monroe
	Alabama	Walker	MILLER		James H Miller Jr	ALABAMA	Jefferson
	Georgia	Bartow	BOWEN		Bowen	GEORGIA	Bartow
	Indiana	Gibson	GIBSON		Gibson	INDIANA	Gibson
	Texas	Fort Bend	WA PARISH		Martin Lake	TEXAS	Rusk
2)	Arizona	Coconino	NAVAJO		W A Parish	TEXAS	Fort Bend
	Texas	Rusk	MARTIN LAKE		Monroe	MICHIGAN	Monroe
	Tennessee	Stewart	CUMBERLAND (TN)		Navajo Generating Station	ARIZONA	Coconino
	Ohio	Gallia	GAVIN		Colstrip 📩	MONTANA	Rosebud
	Minnesota	Sherburne	SHERBURNE COUNTY	$\frown \frown$	Gen J M Gavin	оню	Gallia
, 	Pennsylvania	Beaver			Labadie	MISSOURI	Franklin
	Indiana	Spencer	ROCKPORT (IN)		Monticello	TEXAS	Titus
ſ	Wyoming	Sweetwater	JIM BRIDGER	へく	Sherburne County	MINNESOTA	Sherburne
	Missouri	Franklin	LABADIE	ゝヽ	Cumberland	TENNESSEE	Stewart
	Kansas	Pottawatomie	JEFFREY		John E Amos	WEST VIRGINIA	Putnam
,	Texas	Titus	MONTICELLO (TX)		Bruce Mansfield	PENNSYLVANIA	Beaver
	Utah	Millard	INTERMOUNTAIN		Jeffrey Energy Center	KANSAS	Pottawatomie
ı /	Michigan	Monroe	MONROE (MI)		Jim Bridger	WYOMING	Sweetwater
	West Virginia	Kanawha	JOHN E AMOS		Crystal River	FLORIDA	Citrus
	Florida	Citrus	CRYSTAL RIVER 4&5		Intermountain	UTAH	Millard
	North Carolina	Person	ROXBORO 📩	1 🔪	W H Sammis 🕇	оню	Jefferson
	South Carolina	Berkeley	CROSS 📩	1	Rockport	INDIANA	Spencer
	New Mexico	San Juan	FOUR CORNERS	1	Four Corners Steam ElecSt	NEW MEXICO	San Juan
	Kentucky	Muhlenberg	PARADISE 🕇	1	Laramie River ★	WYOMING	Platte

Page - 25

Rank difference worsens for smaller power plants

Rank of US States differ too

Annual CO2 Emissions (tons) Rank (omparison		
lank	States	U8EPA-2007	CARMA-2007	Diff. %		USEPA	CARMA			
1.	TEXAS	261,798,527	289,729,984	-10.67%	??	1	1			
2.	OHIO	138,567,563	133,183,312	3.89%		2	5	??		
3.	FLORIDA	134,583,091	158,889,198	-18.57%	??	3	2			
4.	INDIANA	132,368,691	137,319,341	-3.74%		4	3			
5.	PENNSYLVANIA	123,583,884	135,559,129	-9.69%		5	4			
6.	ILLINOIS	109,014,968	113,276,473	-3.91%		8	6			
7.	KENTUCKY	101,784,838	98,280,598	3.44%		7	7			
8.	GEORGIA	100,759,081	91,514,885	9.17%		8	8			
9.	ALABAMA	94,803,874	90,686,002	4.34%		9	10			
10.	WEST VIRGINIA	90,888,457	88,614,338	2.48%		10	11			
11.	MISSOURI	80,383,505	82,525,517	-2.68%		11	12			
12.	MICHIGAN	78,841,977	91,488,505	-18.01%	??	12	9	?1		
13.	NORTH CAROLINA	77,850,779	77,842,409	0.01%		13	14			
14.	ARIZONA	68,428,202	64,534,089	2.85%		14	18			
15.	TENNESSEE	63,711,758	63,397,876	0.49%		15	17			
16.	OKLAHOMA	51,548,849	57,088,840	-10.75%	??	18	19	?1		
17.	WISCONSIN	50,175,431	54,831,774	-9.28%		17	20	??		
18.	WYOMING	49,954,054	45,799,988	8.32%		18	24	??		
19.	NEW YORK	49,572,820	69,585,841	-40.37%	??	19	15	??		
20.	LOUISIANA	47,548,400	61,044,651	-28.38%	??	20	18			
21.	COLORADO	48,961,973	47,143,630	-0.39%		21	23			
22.	SOUTH CAROLINA	48,472,992	52,489,777	-12.90%	??	22	21			
23.	IOWA	43,925,814	38,762,631	11.75%	??	23	28	??		
24.	KANSAS	42,987,499	43,570,537	-1.38%		24	25			
25.	CALIFORNIA	42,883,382	79,184,048	-84.60%	??	25	13	??		
26.	UTAH	42,177,274	41,899,804	0.66%		28	27			
27.	MINNESOTA	39,927,678	43,440,885	-8.80%		27	28			
28.	VIRGINIA	37,999,633	49,739,380	-30.89%	??	28	22	??		
29.	NORTH DAKOTA	34,679,303	37,655,620	-8.58%		29	29			
30.	ARKANSAS	32,721,245	35,380,256	-8.13%		30	30			

CARMA's State Aggregates for CO2 Differ from USEPA's Results

CARMA ranks California at 13, but USEPA sets it at 25. Similarly Michigan ranks at 9 by CARMA but 13 by USEPA. Which ranking is right?

Ranks of US counties differ also

www.climatedataduediligence.org

Comparison of County Level CO2 Emissions by Power Plants-2007

199 199	S	ource: USEPA 2007		Sc	ource: CARMA 200	7
Rank	County	State	CO2 (tons)	County	State	CO2 (tons)
1	Titus	TEXAS	30,098,598	Walker	Alabama	28,857,516
2	Monroe	GEORGIA	27,259,555	San Juan	New Mexico	28,475,352
3	San Juan	NEW MEXICO	27,219,562	Harris	Texas	27,981,992
4	Jefferson	OHIO	26,275,972	Gallia	Ohio	26,026,299
5	Gallia	OHIO	25,998,806	Monroe	Georgia	25,302,608
6	Indiana	PENNSYLVANIA	25,701,906	Indiana	Pennsylvania	24,546,125
7	Jefferson	ALABAMA	23,708,510	Jefferson	Ohio	24,222,748
8	Rusk	TEXAS	23,553,669	Kern	California	22,154,254
9	Monroe	MICHIGAN	23,508,562	Berkeley	South Carolina	21,827,904
10	Bartow	GEORGIA	23,243,818	Rusk	Texas	21,342,328
11	Gibson	INDIANA	22,409,315	Fort Bend	Texas	21,322,516
12	Fort Bend	TEXAS	22,161,715	Citrus	Florida	21,158,830

Ranking power plants on the basis of their size produces more accurate results than CARMA

Weak Predictive Ability of CARMA's Model

Indicators	Based on CARMA's model	Based on simple ranking of annual energy output	Remarks
Number of power plants with	15 of 894	22 of 894	This shows that the
identical rank in USEPA's CO2	(1.7%)	(2.5%)	CO2-emissions ranking
estimates			of power plants, based
Number of power plants within \pm	103 of 894	189 of 894	solely on their energy
5 ranks, compared to USEPA's	(11.5%)	(21%)	output, is nearly 1.5
CO2 estimates			times more accurate
Number of power plants within \pm	206 of 894	299 of 894	than CARMA's
10 ranks, compared to USEPA's	(23%)	(33%)	estimation model
CO2 estimates			
Number of power plants within \pm	273 of 894	408 of 894	
15 ranks, compared to USEPA's	(30.5%)	(46%)	
CO2 estimates			

Illogical Results—Gas based power plants show carbon intensity of 6000 lbs/MWh (2722 kg/MWh)

USEPA 2007 Estimates

There appeared to be a pattern to the differences between CARMA and USEPA's numbers

Both axes in log scale

CARMA's errors are related to the size of power plants

Page = 33

Poor Correlation Between CARMA and USEPA Carbon Intensity

Page • 34

CARMA's estimate is on average higher than USEPA's average by around 23% in 2000, and 17% in 2007.

Carbon intensity is differences are higher for natural gas plants

Table 2: Peer Group Comparison							
2007 Data (CAMD-USEPA and CARMA)							
Eucl Catagory	Peer Group-	Sample Size	USEPA Avg.	CARMA Avg.	%		
Fuel Category	Capacity		Intensity	Intensity	Difference		
COAL	<100 MW	21	2,593	2,822	-9%		
COAL	100-500 MW	103	2,210	2,500	-13%		
COAL	500-1000 MW	85	2,070	2,272	-10%		
COAL	>1000 MW	122	2,015	2,101	-4%		
GAS	<100 MW	64	1,327	1,592	-20%		
GAS	100-500 MW	194	1,370	1,681	-23%		
GAS	500-1000 MW	149	1,173	1,542	-31%		
GAS	>1000 MW	56	1,171	1,510	-29%		
2000 Data (eGRID-USEPA and CARMA)							
Fuel Category	Peer Group-	Sample Size	USEPA Avg.	CARMA Avg.	%		
	Capacity		Intensity	Intensity	Difference		
COAL	<100 MW	89	2,326	3,730	-60%		
COAL	100-500 MW	132	2,346	2,657	-13%		
COAL	500-1000 MW	86	2,245	2,349	-5%		
COAL	>1000 MW	109	2,190	2,080	5%		
GAS	<100 MW	360	1,389	2,059	-48%		
GAS	100-500 MW	200	1,373	1,694	-23%		
GAS	500-1000 MW	66	1,279	1,473	-15%		
GAS	>1000 MW	27	1,256	1,510	-20%		

Next decade predictions by CARMA appear to be unreliable

CO2 Intensity (Ibs/MWh) - JC MCNEIL

Performeks Analytics

202 (tons

CO2 Intensity (lbs/MWh) - WC BECKJORD

Energy Output (MWh) - MOSELLE

Performelcs Analytics

Performeks Analytics

Performeks Analytics

Summary of Differences Between USEPA and CARMA

Table A: Percent of Power Plants in CARMA That Differ from USEPA's Official Values by More Than ±5%					
Indicators estimated by CARMA	Year 2000	Year 2007			
Annual CO2 emissions (tons/year)	91%	86%			
Carbon intensity (lbs/MWh)	78.5%	78.5%			
Energy output (MWh)	94%	90%			

RED Dots Show US Power Plants with Inaccurate CO2 Estimates by CARMA

More than 50% of CARMA's CO2 numbers are outside ±25% margin of error when compared to the USEPA official data

Page • 39

Key Lessons for Disclosure: CO2 estimation is not easy

Estimating CO2 using regressions is a dodgy business

- In fact empirical findings show that environmental estimates in general may have accuracy issues
- For example, data quality concerns exist even for the Toxic Release Inventory program in the US
 - Source: "Assessing the accuracy of self-reported data: an evaluation of the toxics release inventory", de Marchi and Hamilton, Journal of Risk and Uncertainty, Volume 32, Number 1 / January, 2006

Key Lessons for Disclosure: Actual Measurement vs Estimates

- Regulatory experience shows that data accuracy requires <u>rigorous</u> <u>monitoring and verification</u>. There is basically no substitute for onsite monitoring and verification using established protocols.
- So carbon disclosure programs should utilize—to the best possible extent—actual on-site monitored data
- Any new methodology must be subjected to detailed stakeholders review and discussions
- <u>Regression estimates</u> should not be used for making <u>precise</u> <u>rankings</u>.

www.climatedataduediligence.org

Climate Data Due Diligence

Home Reports Data Analysis About Us Contact Us

Links

Welcome To Climate Data Due Diligence

Carma Due Diligence Press Release

Carma Due Diligence Key Findings

Carma Due Diligence Report

Carma USEPA Comparative Data

The Climate Data Due Diligence Project is an initiative launched by Performeks to look at various studies throughout the world regarding the environment and to write a public peer review of studies outlining their strengths and weaknesses. At the Climate Data Due Diligence Project we intend to release reports on a regular basis, on new and interesting projects to further broaden the discussion on various topics related to the environment.

Performeks is an independent company that focuses on performance analysis in a variety of areas ranging from the environment to the health sector. We encourage public disclosure and the free flow of ideas. Performeks' driving principle is that good data analysis leads to good public policy decisions.

